On a boundary value problem arising in elastic deflection theory
نویسندگان
چکیده
منابع مشابه
A numerical solution of a singular boundary value problem arising in boundary layer theory
In this paper, a second-order nonlinear singular boundary value problem is presented, which is equivalent to the well-known Falkner-Skan equation. And the one-dimensional third-order boundary value problem on interval [Formula: see text] is equivalently transformed into a second-order boundary value problem on finite interval [Formula: see text]. The finite difference method is utilized to solv...
متن کاملOn Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory
In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...
متن کاملSolvability of an impulsive boundary value problem on the half-line via critical point theory
In this paper, an impulsive boundary value problem on the half-line is considered and existence of solutions is proved using Minimization Principal and Mountain Pass Theorem.
متن کاملBoundary Value Problems in Generalized Thermodiffusive Elastic Medium
In the present study, the boundary value problems in generalized thermodiffusive elastic medium has been investigated as a result of inclined load. The inclined load is assumed to be a linear combination of normal load and tangential load. Laplace transform with respect to time variable and Fourier transform with respect to space variable are applied to solve the problem. As an application of t...
متن کاملSome Remarks on a Neumann Boundary Value Problem Arising in Fluid Dynamics
It is proved that the Neumann boundary value problem, which Mays and Norbury have recently connected with a certain fluid dynamics equation, has a positive solution for any positive value of a particular parameter. Uniform bounds for the solutions and symmetry on a given range of the parameter are also introduced. The proofs include Krasnoselskii’s classical fixed-point theorem on cones of a Ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 2006
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700040405